A new integrable modified Korteweg-de Vries equation with one half degree of nonlinearity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L1
(http://iopscience.iop.org/0305-4470/24/1/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:11

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A new integrable modified Korteweg-de Vries equation with one half degree of nonlinearity

Yi Xiao
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China

Received 12 October 1990

Abstract

An alternative generalized equation which incorporates the modified Kortewegde Vries (MKdV) and KdV equations is proposed and from it a new integrable system of the MKdV type is found.

Integrable systems play a fundamental role in nonlinear science. Since the discovery of the complete integrability of the Kdv equation [1], a special interest has been growing in the exactly solvable systems. In this letter, we report a new integrable nonlinear evolution equation which has the form

$$
\begin{equation*}
16 u_{t}+u_{x x x}+30 u^{1 / 2} u_{x}=0 . \tag{1}
\end{equation*}
$$

This equation is a special case of the following generalized mKdv equation

$$
\begin{equation*}
n^{2} u_{t}+u_{x x x}+(n+1)(n+2) u^{2 / n} u_{x}=0 \tag{2}
\end{equation*}
$$

where n is a positive integer. For $n=4$, (2) gives (1). Clearly, (2) also incorporates the mKdv equation ($n=1$) and the KdV equation ($n=2$). However, unlike the generalized Kdv equation [2]

$$
\begin{equation*}
u_{t}+u_{x x x}+u^{n} u_{x}=0 \tag{3}
\end{equation*}
$$

which takes the Kdv equation as the basic equation, (2) takes the mKdv equation as the base.

In the following, we investigate the integrability of (2) through the Painleve method [3]. The substitution of $u=q^{n}$ leads to the equation

$$
\begin{equation*}
n^{2} q^{2} q_{t}+(n-1)(n-2) q^{3}+3(n-1) q q_{x} q_{x x}+q^{2} q_{x x x}+(n+1)(n+2) q^{4} q_{x}=0 . \tag{4}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
q=\phi^{\alpha} \sum_{j=0}^{\infty} V_{j} \phi^{j} \tag{5}
\end{equation*}
$$

where $V_{j}=V_{j}(x, t), \phi$ is a singular manifold. Substituting (5) into (2), it is found that

$$
\begin{equation*}
\alpha=-1 \quad V_{0}^{2}=-\phi_{x}^{2} \tag{6}
\end{equation*}
$$

and the recursion relation takes the form
$(j+1)[j-(n+2)][j-(2 n+2)] V_{0}^{2} \phi_{x}^{3} V_{j}=F\left(V_{j-1}, \ldots V_{0} ; \phi_{1}, \phi_{x}, \ldots\right)$.

Since the detailed form of F is very complicated, it will be presented elsewhere [4]. It is clear from (7) that the resonances occur at

$$
\begin{equation*}
j=-1 \quad n+2 \quad 2 n+2 . \tag{8}
\end{equation*}
$$

From (8) we find that

$$
\begin{align*}
& j=0: V_{0}^{2}=-1 \tag{9}\\
& j=1: V_{1}=0 \tag{10}\\
& j=2: V_{2}=V_{0} \psi_{t} / 6 \tag{11}\\
& j=3:(n-1) V_{3}=0 \tag{12}\\
& j=4:(n-1)(n-2)\left(10 V_{4}+7 V_{0} V_{2}^{2}\right)=0 \tag{13}\\
& j=5: 6(n-3)(2 n-3) V_{5}+n^{2} V_{2 t}=0 \tag{14}\\
& j=6:(n-2)(n-4)\left(14 V_{6}+31 V_{2}^{3} / 5\right)=0 \tag{15}\\
& \begin{aligned}
& j=7: 10(2 n-5)(n-5) V_{7}+\left(76 n^{2}-327 n+302\right) V_{0} V_{2} V_{5}=0 \\
& j=8: 18(n-3)(n-6) V_{8}+n^{2} V_{51}+\left(191 n^{2}+141 n-2762\right) 3 V_{0} V_{2}^{4} / 100 \\
& \quad+6\left(4 n^{2}-15 n+2\right) V_{0} V_{2} V_{6}=0
\end{aligned} \tag{16}\\
& \begin{aligned}
j=10:-22(n-4)(n-8) V_{10}+n^{2}\left(2 V_{0} V_{2} V_{5}-V_{7}\right),+\left(-58 n^{2}+246 n-206\right) V_{0} V_{5}^{2} \\
\quad+\left(-32 n^{2}+114 n+236\right) V_{0} V_{2} V_{8}+\left(-641 n^{2}+3117 n+2078\right) 3 V_{2}^{5} / 100 \\
\quad+4\left(-8 n^{2}+60 n-67\right) V_{2}^{2} V_{6}=0
\end{aligned}
\end{align*}
$$

where we have used the reduced ansatz [5]

$$
\phi=x+\psi(t) \quad \phi_{x}=1 \quad V_{j}=V_{j}(t) .
$$

When $n=1$ and $n=2$, the compatability conditions at $j=n+2$ and $j=2 n+2$ are satisfied identically and the mKdV and Kdv equations possess the Painlevé property. This is a well known fact [3]. However, the result that (2) with $n=4$, i.e. (1), also possesses the Painlevé property, and is thus identified as integrable, is new. This is easy to see from (15) and (18) since the resonances occur at $j=6$ and $j=10$ respectively. The integrability of (2) with general n is difficult to investigate through the Painlevé method since (7) becomes very complicated for large n.

References

[1] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 191095
[2] Kruskal M D, Miura R M and Gardner C S 1970 J. Math. Phys. 11925
[3] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24522
[4] Xiao Y 1990 Preprint
[5] Jimbo M, Kruskal M D and Miwa T 1982 Phys. Lett. 92A 59

